Generative AI tourism recommendations: linguistic and cultural variations in the representations of tourist destinations
Article Sidebar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Main Article Content
This study analyses linguistic and cultural variations in tourism recommendations generated by large language models (LLMs), focusing on the behaviour of ChatGPT when responding to prompts in Spanish, Basque, English, and Russian. Using a mixed-methods experimental design, 210 AI-generated responses were evaluated based on structured prompts related to three destinations in the Basque Country: Zumaia, Zarautz, and Donostia-San Sebastián. The results reveal significant differences in the accuracy, comprehensiveness, and structure of recommendations depending on the language of the query and the toponymic form used. Higher rates of errors and generic content were observed in foreign languages, particularly Russian, while local languages yielded more detailed recommendations, though with occasional factual inaccuracies. Destination recognition proved sensitive to the writing system, with reduced performance for non-Latin scripts. These findings reflect a linguistic and cultural disparity in the automated generation of tourism content, likely linked to biases in training data. The study concludes that generative AI systems must be adapted to the multilingual context of tourism through collaborative strategies involving developers, tourism managers, and cultural experts to ensure digital representations that are accurate, inclusive, and culturally contextualised.
Article Details
Aurkene Alzua Sorzabal, Universidad de Deusto
Dr. Aurkene Alzua-Sorzabal is a Professor at Nebrija University, with a dual affiliation at the University of Deusto. She holds a PhD in International Tourism from Purdue University (USA) and currently serves as Director of the Telefónica-Nebrija Chair in Tourism Intelligence and Principal Investigator of the Research and Innovation Group in Smart Tourism (Smartour-Inn).
She is co-founder of Lurmetrika Labs, a company specialised in data-driven tourism, and formerly served as Executive Director of CICtourGUNE, the Research Centre for Tourism Competencies. She has participated in 21 scientific research projects and currently leads national research funded under the Spanish RETOS Programme.
Dr. Alzua-Sorzabal is the author of over 75 academic publications on tourism, big data, and smart destinations. She is a member of the Editorial Review Board of the Journal of Information Technology & Tourism and collaborates regularly as a peer reviewer for leading scientific journals.
Her teaching and research focus on digital transformation in tourism, the implementation of smart solutions, and data-driven decision-making. Her current lines of research include carbon neutrality, sociotechnical ecosystems, and resilience in the tourism sector. Her work aims to improve destination management, enhance visitor experiences, and promote sustainable tourism models. With a strong academic background and institutional leadership, Dr. Alzua-Sorzabal combines scientific excellence, applied innovation, and strategic insight in advancing the field of smart tourism.
ALIA. (2025). La infraestructura pública de IA en castellano y lenguas cooficiales. https://alia.gob.es/
Blodgett, S. L., & O’Connor, B. (2017). Racial Disparity in Natural Language Processing: A Case Study of Social Media African-American English (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1707.00061
Cohen, S. A., Prayag, G., & Moital, M. (2014). Consumer behaviour in tourism: Concepts, influences and opportunities. Current Issues in Tourism, 17(10), 872–909. https://doi.org/10.1080/13683500.2013.850064 DOI: https://doi.org/10.1080/13683500.2013.850064
Crompton, J. L. (1979). Motivations for pleasure vacation. Annals of Tourism Research, 6(4), 408–424. https://doi.org/10.1016/0160-7383(79)90004-5 DOI: https://doi.org/10.1016/0160-7383(79)90004-5
Dann, G. M. S. (1977). Anomie, ego-enhancement and tourism. Annals of Tourism Research, 4(4), 184–194. https://doi.org/10.1016/0160-7383(77)90037-8 DOI: https://doi.org/10.1016/0160-7383(77)90037-8
Dann, G. M. S. (1981). Tourist motivation an appraisal. Annals of Tourism Research, 8(2), 187–219. https://doi.org/10.1016/0160-7383(81)90082-7 DOI: https://doi.org/10.1016/0160-7383(81)90082-7
Doğan, S., & Niyet, İ. Z. (2024). Artificial Intelligence (AI) in Tourism. In C. Tanrisever, H. Pamukçu, & A. Sharma (Eds.), Future Tourism Trends Volume 2 (pp. 3–21). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83753-970-320241001 DOI: https://doi.org/10.1108/978-1-83753-970-320241001
Fleisig, E., Smith, G., Bossi, M., Rustagi, I., Yin, X., & Klein, D. (2024). Linguistic Bias in ChatGPT: Language Models Reinforce Dialect Discrimination (No. arXiv:2406.08818). arXiv. https://doi.org/10.48550/arXiv.2406.08818 DOI: https://doi.org/10.18653/v1/2024.emnlp-main.750
Fung, Y., Zhao, R., Doo, J., Sun, C., & Ji, H. (2024). Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2402.09369
Gong Chao. (2009). Human-Computer Interaction: Process and Principles of Human-Computer Interface Design. 2009 International Conference on Computer and Automation Engineering, 230–233. https://doi.org/10.1109/ICCAE.2009.23 DOI: https://doi.org/10.1109/ICCAE.2009.23
Grewal, D., Roggeveen, A. L., & Nordfält, J. (2017). The Future of Retailing. Journal of Retailing, 93(1), 1–6. https://doi.org/10.1016/j.jretai.2016.12.008 DOI: https://doi.org/10.1016/j.jretai.2016.12.008
Grundner, L., & Neuhofer, B. (2021). The bright and dark sides of artificial intelligence: A futures perspective on tourist destination experiences. Journal of Destination Marketing & Management, 19, 100511. https://doi.org/10.1016/j.jdmm.2020.100511 DOI: https://doi.org/10.1016/j.jdmm.2020.100511
GuideGeek. (2025). For Destinations – GuideGeek. https://guidegeek.com
Gursoy, D., Li, Y., & Song, H. (2023). ChatGPT and the hospitality and tourism industry: An overview of current trends and future research directions. Journal of Hospitality Marketing & Management, 32(5), 579–592. https://doi.org/10.1080/19368623.2023.2211993 DOI: https://doi.org/10.1080/19368623.2023.2211993
Hershcovich, D., Frank, S., Lent, H., Lhoneux, M. de, Abdou, M., Brandl, S., Bugliarello, E., Piqueras, L. C., Chalkidis, I., Cui, R., Fierro, C., Margatina, K., Rust, P., & Søgaard, A. (2022). Challenges and Strategies in Cross-Cultural NLP (No. arXiv:2203.10020). arXiv. https://doi.org/10.48550/arXiv.2203.10020 DOI: https://doi.org/10.18653/v1/2022.acl-long.482
Jørgensen, A., & Søgaard, A. (2021). Evaluation of Summarization Systems across Gender, Age, and Race (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2110.04384 DOI: https://doi.org/10.18653/v1/2021.newsum-1.6
Kim, J. H., Kim, J., Kim, C., & Kim, S. (Sam). (2023). Do you trust ChatGPTs? Effects of the ethical and quality issues of generative AI on travel decisions. Journal of Travel & Tourism Marketing, 40(9), 779–801. https://doi.org/10.1080/10548408.2023.2293006 DOI: https://doi.org/10.1080/10548408.2023.2293006
Lehto, X. Y., Timothy, D. J., & Xiao, H. (2025). The future of destinations: Rethinking smartness, resisting algorithmic flattening, and reclaiming tourism place. Journal of Destination Marketing & Management, 37, 101021. https://doi.org/10.1016/j.jdmm.2025.101021 DOI: https://doi.org/10.1016/j.jdmm.2025.101021
Lew, A. A. (1987). A framework of tourist attraction research. Annals of Tourism Research, 14(4), 553–575. https://doi.org/10.1016/0160-7383(87)90071-5 DOI: https://doi.org/10.1016/0160-7383(87)90071-5
Li, C., Chen, M., Wang, J., Sitaram, S., & Xie, X. (2024). CultureLLM: Incorporating Cultural Differences into Large Language Models. DOI: https://doi.org/10.52202/079017-2693
Liu, C. C., Koto, F., Baldwin, T., & Gurevych, I. (2024). Are Multilingual LLMs Culturally-Diverse Reasoners? An Investigation into Multicultural Proverbs and Sayings (No. arXiv:2309.08591). arXiv. https://doi.org/10.48550/arXiv.2309.08591 DOI: https://doi.org/10.18653/v1/2024.naacl-long.112
Liu, Z. (2024). Cultural Bias in Large Language Models: A Comprehensive Analysis and Mitigation Strategies. Journal of Transcultural Communication. https://doi.org/10.1515/jtc-2023-0019 DOI: https://doi.org/10.1515/jtc-2023-0019
Masoud, R. I., Liu, Z., Ferianc, M., Treleaven, P., & Rodrigues, M. (2024). Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede’s Cultural Dimensions (No. arXiv:2309.12342). arXiv. https://doi.org/10.48550/arXiv.2309.12342
Norman, D. A. (1983). CH1’83 Proceedings December 1983. DOI: https://doi.org/10.1145/800045.801571
Plog, S. C. (1974). Why Destination Areas Rise and Fall in Popularity. Cornell Hotel and Restaurant Administration Quarterly, 14(4), 55–58. https://doi.org/10.1177/001088047401400409 DOI: https://doi.org/10.1177/001088047401400409
Ren, R., Yao, X., Cole, S., & Wang, H. (2024). Are Large Language Models Ready for Travel Planning? (No. arXiv:2410.17333). arXiv. https://doi.org/10.48550/arXiv.2410.17333
Richards, G. (2019). Creative tourism: Opportunities for smaller places? Tourism & Management Studies, 15(SI), 7–10. https://doi.org/10.18089/tms.2019.15si01 DOI: https://doi.org/10.18089/tms.2019.15SI01
Rico, A., Martínez-Blanco, J., Montlleó, M., Rodríguez, G., Tavares, N., Arias, A., & Oliver-Solà, J. (2019). Carbon footprint of tourism in Barcelona. Tourism Management, 70, 491–504. https://doi.org/10.1016/j.tourman.2018.09.012 DOI: https://doi.org/10.1016/j.tourman.2018.09.012
Rigin, S., Kottekkadan, N. N., K Thomas, T., & Kk, M. N. (2025). Generative ai tools (CHATGPT*) in tourism research: An experimental conversation. Tourism and Hospitality Management, 31(2). https://doi.org/10.20867/thm.31.2.13 DOI: https://doi.org/10.20867/thm.31.2.13
Robinson, M., Viswanathan, S., Baffoun, S., Qi, A. Y., & Subramaniam, S. (2024). The travel industry’s new trip—How generative AI can redefine customer experiences and unlock new value for organizations.
Shin, S., Kim, J., Lee, E., Yhee, Y., & Koo, C. (2025). ChatGPT for Trip Planning: The Effect of Narrowing Down Options. Journal of Travel Research, 64(2), 247–266. https://doi.org/10.1177/00472875231214196 DOI: https://doi.org/10.1177/00472875231214196
Stoica, A.-A. (2020, May 9). Algorithmic Fairness for Networked Algorithms. Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckand, New Zealand.
Tao, Y., Viberg, O., Baker, R. S., & Kizilcec, R. F. (2024). Cultural Bias and Cultural Alignment of Large Language Models. PNAS Nexus, 3(9). https://doi.org/10.1093/pnasnexus/pgae346 DOI: https://doi.org/10.1093/pnasnexus/pgae346
UN. (2008). International Recommendations for Tourism Statistics 2008.
UN Tourism (Ed.). (2019). UNWTO Tourism Definitions | Définitions du tourisme de l’OMT | Definiciones de turismo de la OMT. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284420858 DOI: https://doi.org/10.18111/9789284420858
UN Tourism & Saxion University of Applied Sciences. (2025). Artificial Intelligence Adoption in Tourism – Key Considerations for Sector Stakeholders. UN Tourism. https://doi.org/10.18111/9789284426065 DOI: https://doi.org/10.18111/9789284426065
Van Doorn, J., Mende, M., Noble, S. M., Hulland, J., Ostrom, A. L., Grewal, D., & Petersen, J. A. (2017). Domo Arigato Mr. Roboto: Emergence of Automated Social Presence in Organizational Frontlines and Customers’ Service Experiences. Journal of Service Research, 20(1), 43–58. https://doi.org/10.1177/1094670516679272 DOI: https://doi.org/10.1177/1094670516679272
Volchek, K., & Ivanov, S. (2024). ChatGPT as a Travel Itinerary Planner. In K. Berezina, L. Nixon, & A. Tuomi (Eds.), Information and Communication Technologies in Tourism 2024 (pp. 365–370). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-58839-6_38 DOI: https://doi.org/10.1007/978-3-031-58839-6_38
Wörndl, W., & Herzog, D. (2022). Mobile Applications for e-Tourism. In Z. Xiang, M. Fuchs, U. Gretzel, & W. Höpken (Eds.), Handbook of e-Tourism (pp. 273–293). Springer International Publishing. https://doi.org/10.1007/978-3-030-48652-5_17 DOI: https://doi.org/10.1007/978-3-030-48652-5_17
Yoon, Y., & Uysal, M. (2005). An examination of the effects of motivation and satisfaction on destination loyalty: A structural model. Tourism Management, 26(1), 45–56. https://doi.org/10.1016/j.tourman.2003.08.016 DOI: https://doi.org/10.1016/j.tourman.2003.08.016
Zhang, R., Cahyawijaya, S., Cruz, J. C. B., Winata, G. I., & Aji, A. F. (2023). Multilingual Large Language Models Are Not (Yet) Code-Switchers (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2305.14235 DOI: https://doi.org/10.18653/v1/2023.emnlp-main.774